
Fabrice Gouny †, Fazia Fouchal †, Pascal Mailllard ‡, and Sylvie Rossignol †‡
† Groupe d’Étude des Matériaux Hétérogènes (GEMHMCD), Ecole Nationale Supérieure de Céramique Industrielle, 12 rue Atlantis, 87068 Limoges, France
‡ Groupe d’Étude des Matériaux Hétérogènes (GEMH-GCD), Boulevard Jacques Derche, 19300 Egletons, France
§ Research and Development Department, Centre Technique de Matériaux Naturels de Construction (CTMNC), Estar Technopole BP 26929, 87069 Limoges Cedex, France

DOI: 10.1021/ie403670c
Publication Date (Web): February 10, 2014
Copyright © 2014 American Chemical Society

*E-mail: sylvie.rossignol@unilim.fr. Tel.: +33 5 87 50 25 64.

CCS Section: Cement, Concrete, and Related Building Materials

Abstract

In building construction, geopolymer binder or mortar can interact with the structural materials and thus modify the binder formation mechanisms. In a geopolymer binder, the availability and amount of siliceous species is a preponderant parameter influencing the nature of networks formed after consolidation. In this study, the interactions between the binder and structural materials (wood and earth bricks) were investigated by 29Si magic angle spinning nuclear magnetic resonance (MAS NMR) and Fourier transform infrared spectroscopy (FTIR) during and after the consolidation. Then, the effect of the amount and nature of the siliceous species available in the reaction medium were analyzed. According to the siliceous species available, it is possible to form different types of materials (hardening or sedimented materials). By corroborating these results with MAS NMR and FTIR analyses, a formation scheme of the binder in contact with the materials was proposed.